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The strictly thermal spectrum in dragging coordinate system and the tunneling radiation
characteristics of stationary axisymmetry Kerr-Newman de Sitter black hole is studied.
The result shows that the tunneling rates at the event and cosmological horizon are
related to the change of Bekenstein-Hawking entropy and that the factual radiation
spectrum is not strictly pure thermal. Thus an exact correction to the Hawking thermal
spectrum is present.
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1. INTRODUCTION

In 1975, Hawking proved theoretically that the thermal radiation could be
happened from black holes, and the corresponding temperature is true (Hawking,
1975). In 1976, Damour and Ruffini applied not second quantilization but Relativ-
ity Quantum Mechanics in curved space- time to verify the Hawking radiation from
black holes (Damour and Ruffini, 1976). In 1988, Sannan advanced the method by
using the idea of Quantum Field Theory and Quantum Statistics (Sannan, 1988).
From then on, a series of research on that of stationary and non-stationary black
holes has been carried out (Jiang et al., 2005; Liu and Zhao, 2001; Xu, 1998;
Yang and Lin, 2001; Zhao et al., 1999). However, all of the derived results are the
precisely thermal because of the common fixed background space-time. Follow-
ing that, a paradox of information loss is present with the black hole evaporation,
which means that the pure quantum state will be disintegrated to the mixture, using
the language of Quantum Field Theory, the ingoing state is the pure state, but the
outgoing is the mixture, thus the underlying unitary theory is disobeyed. In addi-
tion, Hawking regarded that the thermal radiation of black hole is the contribution
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of the quantum tunneling effect triggered by the vacuum fluctuation near the event
horizon, namely, a pair of particles creates just inside the horizon, the positive
energy particle is tunneling out and the negative anti-particle is absorbed by black
hole. In other words, we can consider that the particles created just outside the
horizon, the negative energy anti-particle is tunneled into the horizon because the
negative energy orbit is only existed into the horizon, thus the positive energy
particle is left outside the horizon and moves towards the infinite distance and
form Hawking thermal spectrum. Both the two narrative styles have a tunneling
process, so the tunneling barrier should be found to truly describe the tunneling
process and obtain the true radiate spectrum. But till now, the causes of the tun-
neling barrier are unclear for us. The related references do not use the language
of quantum tunneling method to discuss Hawking radiation, so strictly speaking,
it is not the quantum tunneling method.

Recently, a method to describe Hawking radiation as tunneling process, where
a particle moves in dynamic geometry, has been developed by Kraus and Wilczek
and elaborated upon by Parikh and Wilczek who carried out research on the tun-
neling radiation characteristics of static spherically symmetric Schwarzchild black
hole and Reissner-Nordström black hole (Parikh, 2000, 2002, 2004). The results
display that the derived radiation spectrum is not strictly thermal under the consid-
eration of energy conservation and the unfixed space-time background, which pro-
vides a correct amendment to Hawking radiation spectrum. The method overcomes
the defects of Hawking radiation, and points out that the tunneling barrier was
offered by self-gravitation among particles. Following this method, Hemming and
Keski-Vakkuri have investigated the Hawking radiation from Anti-de Sitter black
holes (Hemming and Keski-Vakkuri, 2001), and Medved has studied those from
a de Sitter cosmological horizon (Medved, 2002). But all of those are limited to
that of the spherically symmetric black holes. In this paper, we extend the Parikh’s
work to study the Hawking radiation as tunneling from stationary axi-symmetry
Kerr-Newman de Sitter black holes, and obtain the Hawking spectrum in dragging
coordinate system and the tunneling rates at the event and cosmological hori-
zon. In Section 2, the horizons and the infinite red-shift surface are researched. In
Section 3, we obtain the precisely thermal spectrum in dragging coordinate system.
The main work is left in Section 4, and investigates the tunneling radiation charac-
teristics of the black hole. Finally, Section 5 contains discussion and conclusion.

2. THE EVENT HORIZON AND THE INFINITE RED-SHIFT SURFACE

The space-time line element of Kerr-Newman de Sitter black hole can be
written as (Dehgham and KhajehAzad, 2003)

ds2 = −�2
r

ρ2

(
dtkNS − a

�
sin2θdϕ

)2
+ ρ2

�2
r

dr2 + ρ2

�θ

dθ2

+ �θ sin2θ

ρ2

(
adtkNS − (r2 + a2)

�
dϕ

)2

, (1)
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where tkNS is the coordinate time of the black hole, and

�2
r = (r2 + a2)

(
1 − r2

l2

)
− 2Mr + q2, �θ = 1 + a2

l2
cos2θ,

� = 1 + a2

l2
, ρ2 = r2 + a2cos2θ. (2)

According to the null surface equation gµv ∂f

∂xµ

∂f

∂xv = 0, we have

r4 + (a2 − l2) r2 + 2Ml2r − (a2 + q2) l2 = 0, (3)

which is the horizon equation of the black hole, and there are a negative root
r− and three roots r0, rh, rc corresponding to the inner, outer and cosmological
horizon of the black hole respectively, namely

r0 = −
√

Z1 +
√

Z2 +
√

Z3,

rh =
√

Z1 −
√

Z2 +
√

Z3, (4)

rc =
√

Z1 +
√

Z2 −
√

Z3,

in which

√
Z1 =

√
l2 − a2

6

⎡
⎣1 +

√
1 − 12l2(q2 + a2)

(l2 − a2)2
cos

α

3

⎤
⎦

1/2

,

√
Z2 =

√
l2 − a2

6

⎡
⎣1 −

√
1 − 12l2(q2 + a2)

(l2 − a2)2
cos

(α

3
+ π

3

)⎤
⎦

1/2

,

√
Z3 =

√
l2 − a2

6

⎡
⎣1 −

√
1 − 12l2(q2 + a2)

(l2 − a2)2
cos

(α

3
− π

3

)⎤
⎦

1/2

,

α = arccos

{
− (l2 − a2)[(l2 − a2)2 + 36l2(q2 + a2)] − 54M2l4

[(l2 − a2)2 − 12l2(q2 + a2)]3/2

}
.

Now, Let’s calculate the horizon area of the black hole, under the condition
of constant-time slice and r = rh, the line element (1) will be reduced to

dσ 2 = ρ2

�θ

dθ2 + sin2 θ

ρ2�2

[
�θ

(
r2
h + a2

)]
dϕ2, (5)

so we have

g =
∣∣∣∣
g22 g23

g32 g33

∣∣∣∣ = sin2θ

�2

(
r2
h + a2

)2
, (6)
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and then the event horizon of the black hole is

Ah =
∫

dA′ =
∫ √

gdθdϕ = 4π

�

(
r2
h + a2) . (7)

the cosmological horizon is

Ac = 4π

�

(
r2
c + a2

)
. (8)

From g00 = 0, the infinite red-shift surface equation can be written as

�2
r − �θ sin2θa2 = 0, (9)

obviously, the infinite red-shift surface and the event horizon of the black hole are
not coincident with each other. So performing the dragging coordinate transfor-
mation as

ϕ̇ = dϕ

dtKNS
= −g03

g33
= 
, (10)

we have

ds2 = ĝ00dt2
KNS + ρ2

�2
r

dr2 + ρ2

�θ

dθ2, (11)

where ĝ00 = g00 − g2
03

g33
= − �θ �

2
r ρ

2

�θ (r2+a2)2−�2
r a

2sin2θ
. At this momentum, when ĝ00 = 0,

the infinite red-shift surface is coincident with the horizons of the black hole in
the dragging coordinate system.

3. THE HAWKING PRECISELY THERMAL SPECTRUM
IN DRAGGING COORDINATE SYSTEM

In this section, we will discuss the thermal radiation spectrum of uncharged
particles. In the curved space-time, Klein-Gordon equation of uncharged particles
can be expressed as

1√−g

∂

∂xµ

(√−g · gµυ ∂

∂xυ
�

)
= µ2�. (12)

Substituting Eq. (11) into Eq. (12) yields

ĝ00 ∂2�

∂t2
k

+ g11 ∂2�

∂r2
+ 1√−g

∂�

∂r

∂

∂r
(
√−gg11) + g22 ∂2�

∂θ2

+ 1√−g

∂�

∂θ

∂

∂θ
(
√−gg22) = µ2�. (13)

Carrying on the separation variable to Eq. (13) as

� = e−iωtKNSR (r) ψ (θ ) eimϕ, (14)
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and considering the effect of the dragging coordinate transformation, we can obtain
the following expression

d2R (r)

dr2
+ 1

g11

(
g11

√−g

∂

∂r

√−g + ∂g11

∂r

)
dR

dr
+ 1

g11

R (r)

ψ (θ )
{G (r, θ )}

= 1

g11

[
µ2 +

(
ω + m

g03

g33

)2

ĝ00

]
R (r) (15)

where G(r, θ ) = �θ

ρ2
d2ψ(θ)

dθ2 + 1√−g
∂
∂θ

(
√−gg22) dψ(θ)

dθ
. And then, introducing the

tortoise coordinate transformation

r∗ = 1

2κh

In (r − rh) , (16)

we have

d2R (r)

dr2∗
− 2κh

dR

dr∗
+ 2κh (r − rh)

(
1√−g

∂
√−g

∂r
+ 1

g11

∂g11

∂r

)
dR

dr∗

+ 4κ2
h (r − rh)2

g11

R (r)

ψ (θ )
{G (r, θ )}

= 4κ2
h (r − rh)2

g11

[
µ2 +

(
ω + m

g03

g33

)2

ĝ00

]
R (r) , (17)

where κh = 1
2l2(r2+a2) (rh − r−) (rh − r0) (rc − rh) is the surface gravity of the

event horizon. In the vicinity of the event horizon, namely r → rh, we have

4κ2
h (r − rh)2

g11

[
µ2 +

(
ω + m

g03

g33

)2

ĝ00

]
R (r) = − (ω − m
H )2 R (r) . (18)

Substituting Eq. (18) into Eq. (17), we can get the standard wave equation
near the black hole

d2R (r)

dr2∗
+ (ω − ω0)2 R (r) = 0. (19)

where ω0 = m
H = ma�

r ′2
h+a2 . Solving Eq. (19) can we obtain the radial wave func-

tion of uncharged particles ingoing and outgoing the black hole as

ψin = e−iων, ψout = e−iωνe2i(ω−ω0)r∗ . (20)

where ν = tKNS + ω−ω0
ω

r∗ is the advanced Eddington-Finkelstein coordinate. ψout

can be written as follows near the event horizon

ψout = e−iων (r − rh)i(ω−ω0)/κ . (21)
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Obviously, ψout has a logarithm singularity. By analytical continuation rotat-
ing −π through the lower-half complex r−plane as

(r → rh) → |r − rh| e−iπ = (rh − r) e−iπ , (22)

and using the Damour-Ruffini stretch method of analysis, and extending it to the
inside of the event horizon, we can get the spectrum of the Hawking radiation

Nω = 1

e
(ω−ω0)

T − 1
= 1

eαhAh − 1
, (23)

where

T = κh

2π
, αh = �(ω − ω0)l2

2
[−2(a2 + q2)l2r−1

h + 3Ml2 + (a2 − l2)rh

] , (24)

where Ah is the area of the event horizon of the black hole. Obviously, the derived
Hawking radiation spectrum at the event horizon is related to the fixed area of the
event horizon Ah.

In the same word, the Hawking radiation spectrum at the cosmological hori-
zon is

Nω = 1

e
(ω−ω0)

T − 1
= 1

eαcAc − 1
, (25)

where

T = κc

2π
, αc = �(ω − ω0)l2

2
[−2(a2 + q2)r−1

c l2 + 3Ml2 + (a2 − l2)rc

] . (26)

Obviously, the derived Hawking radiation spectrum at the cosmological hori-
zon is still related to the fixed area of the cosmological horizon Ac.

In summary, the thermal prosperity of Kerr-Newman de Sitter black hole can
be described in the dragging coordinate system, the expressions (23) and (25) are
based on the fixed background space-time. In fact, the horizons change with the
black hole evaporation, and the factual background space-time are dynamical.

4. THE GENERAL PAINLEVE COORDINATE TRANSFORMATION
AND THE QUANTUM EFFECT VIA TUNNELING

Although the infinite red-shift surface and the horizons are coincident with
each other in the dragging coordinate system, there still exists a coordinate sin-
gularity at the horizon of the black hole, which brings us inconvenience to in-
vestigate the tunneling behavior across the horizon of the black hole. So the
new coordinate transformation is needed. Parikh applied the Painlevé coordinate
dtS = dt + f ′ (r) dr to eliminate the coordinate singularity and investigate the



The Tunneling Radiation Characteristics of Kerr-Newman de Sitter Black Hole 631

Hawking radiation of the sphere-symmetric black hole via tunneling. In this pa-
per, the space-time is axi-symmetrical, so we should go on performing the general
Painlevé coordinate transformation as (Jiang and Wu, 2005; Yang, 2005; Yang
et al., 2006; Zhang and Zhao, 2005)

dtKNS = dt + F (r, θ ) dr + G (r, θ ) dθ, (27)

where F (r, θ ) and G (r, θ ) are two functions of r and θ , and the integrability condi-
tion of Eq. (27) satisfies ∂θF (r, θ ) = ∂rG (r, θ ). Substituting Eq. (27) into Eq. (11)
and ordering the derived constant-time slice of the spacetime flat Euclidean in ra-
dial, so the line element of the black hole in the general Painlevé coordinate system
is

ds2 = ĝ00dt2 + dr2 ± 2
√

ĝ00 (1 − g11)dtdr + [ĝ00G
2 (r, θ ) + g22]dθ2

+ 2
√

ĝ00 (1 − g11)G (r, θ ) drdθ + 2ĝ00G (r, θ ) dt dθ. (28)

where the positive sign (+) denotes the space-time of the outgoing particle, and the
negative sign (−) represents the line element of the ingoing particle. Substituting
Eq. (28) into the Landau’s condition of the coordinate clock synchronization, we
can also obtain ∂θF (r, θ ) = ∂rG (r, θ ). Thus the Painlevé-Kerr-Newman de Sitter
line element satisfies the Landau’s condition of the coordinate clock synchroniza-
tion, apart from this, there are many other superior features: The infinite red-shift
surface and the horizons of the black hole are coincident with each other; The
metric is regular at the the horizons of the black hole; the measure on the surfaces
of constant-time slices is the same as that of flat spacetime. All of these characters
are advantageous for us to study the Hawking radiation via tunneling.

Considering the uncharged particle’s radial motion and tunneling from the
event horizon as an ellipsoid shell, the particle should be still an ellipsoid shell
during the tunneling process to conserve the symmetry of the space-time. So from
Eq. (28), the radial null geodesics equation are given as

ṙ = dr

dt
= −

√
ĝ00 (1 − g11) ±

√
−ĝ00g11 =

±ρ2
√

�θ −
√

ρ2�θ

(
ρ2 − �2

r

)
√

�θ (r2 + a2)2 − �2
r a

2 sin2 θ
.

(29)
where the plus (minus) sign denotes the outgoing (ingoing) geodesics.

Now, Let’s move on to discuss the tunneling radiation characteristics of the
black hole. For the sake of simplicity, we only consider the tunneling radiation
of uncharged particles. In our discussion, we can consider the picture of a pair of
virtual particles spontaneously created just inside the horizon, the positive energy
virtual particle can tunnel out and the negative energy anti-particle is absorbed
by the black hole. Taking the particle’s self-gravitation interaction, energy con-
servation, angular momentum conservation into account, and fixing the total mass
and angular momentum of the space-time and allowing those of the black hole to



632 Yang, Jiang, and Li

fluctuate, when the particle is tunneled out as an ellipsoid shell of energy ω and
angular momentum ωa, then the mass and the angular momentum of the black
hole will be replaced by (M − ω) and (M − ω) a respectively. Meanwhile the
event horizon will shrink, we refer to the cases pre- and post shrinking as two
turning points of potential barrier, the distance between the two turning points is
the width of potential barrier and decided by the energy of outgoing particle. At
this critical moment, Eqs. (4), (28) and (29) will be modified by replacing the mass
parameter M with (M − ω), and the shell of energy will travel on the modified
geodesics

ṙ = dr

dt
=

±ρ2
√

�θ −
√

ρ2�θ

(
ρ2 − �′2

r

)
√

�θ (r2 + a2)2 − �′2
r a

2 sin2 θ

, (30)

where �′2
r = (r2 + a2)(1 − r2

l2 ) − 2(M − ω)r + q2. In the WKB approximation,
the emission rate from a radiating source can be expressed in terms of the imaginary
part of the action for an outgoing positive energy particle as

� ∼ e−2ImS. (31)

In the dragging coordinate system, the coordinate ϕ does not appear in the
line element expression. That is, ϕ is an ignored coordinate in the Lagrangian
function. To eliminate this freedom completely, the action should be written as

ImS = Im
∫ tf

ti

(L − Pϕϕ̇)dt = Im

[∫ rf

ri

Prdr −
∫ ϕf

ϕi

Pϕdϕ

]

= Im

[∫ rf

ri

∫ pr

0
dP ′

r −
∫ ϕf

ϕi

∫ pϕ

0
dP ′

ϕdϕ

]
dr. (32)

where ri and rf are just inside and outside the barrier at the event horizon through
which the particle is tunneling. Applying Hamilton’s equations

ṙ = dH

dPr

∣∣∣∣(r;ϕ,Pϕ),

(33)

ϕ̇ = dH

dPϕ

∣∣∣∣(ϕ;r,Pr ), dH(ϕ;r,Pr ) = 
′dJ

where H = M
�2 is the total energy of the black hole, and when the particle of

energy ω emits out of the event horizon, then H = M−ω
�2 dH = − 1

�2 dω, Pϕ = J .
Substituting Eq. (33) into Eq. (32) can we obtain

ImS = Im
∫ M−ω

�2

M

�2

∫ rf

ri

(
dH ′

ṙ
− 
′dJ ′

ṙ

)
dr = Im

∫ ω

0

∫ rf

ri

− 1

�2

(
dω′

ṙ
− a
′dω′

ṙ

)
dr
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= Im
∫ ω

0

∫ rf

ri

− 1

�2

√
�θ (r2 + a2)2 − �′2

r a2 sin2 θ [ρ2
√

�θ +
√

ρ2�θ (ρ2 − �̃′2
r )]

ρ2�θ�̃′2
r

× t(1 − a
′)dω′dr (34)

where �̃′2
r = (r2 + a2)(1 − r2

l2 ) − 2(M − ω′)r + q2. Equation (34) tells us that
there is a pole at the event horizon of the black hole after the particle emission.
The integral can be evaluated by deforming the contour around the pole, so as to
ensure that positive energy solution decay in time. So we have

ImS = Im
∫ rf

ri

−πri

�
dr = − π

2�

(
r2
f − r2

i

)
. (35)

Substituting Eq. (35) into Eq. (31), we can get the tunneling rate at the event
horizon as

� ∼ e−2ImS = e
π
�

(r2
f −r2

i ) = e
A′

h
−Ah

4 = e�SBH . (36)

where �SBH is the Bekenstein-Hawking entropy at the event horizon, Ah and A′
h

are the area of the event horizon before and after the particle of energy ω emission.
Comparing Eq. (36) with Eq. (23), we can learn that the tunneling rate at the event
horizon provides a correct modification to Hawking radiation spectrum.

Now, we will discuss the Hawking radiation of the particle via tunneling at the
cosmological horizon. Different from the particle’s tunneling behavior of the event
horizon, the particle is found tunneled into the cosmological horizon. So when the
particle with energy ω tunnels into the cosmological horizon, Eqs. (4), (28) and
(29) will be modified by replacing the mass parameter M with (M + ω) after taking
the self-gravitation action into account. Therefore, when the particle with energy
ω tunnels into the cosmological horizon, the null radial geodesics can be written as

ṙ = dr

dt
= ±ρ2

√
�θ − √

ρ2�θ (ρ2 − �′′2
r )√

�θ (r2 + a2)2 − �′′2
r a2 sin2 θ

, (37)

where �′2
r = (r2 + a2)(1 − r2

l2 ) − 2(M + ω)r + q2. Different from the event hori-
zon, H = − M

�2 and H ′ = −M+ω
�2 are the total energy of the black hole at the cos-

mological horizon before and after the particle of energy ω tunneling into, and then
the imaginary part of the action at the cosmological horizon can be expressed as

ImS = Im
∫ − m−ω

�2

− m

�2

∫ rf c

ric

(
dH ′

ṙ
− 
′dJ ′

ṙ

)
dr

= Im
∫ ω

0

∫ rf c

ric

− 1

�2

(
dω′

ṙ
− a
′dω′

ṙ

)
dr
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= Im
∫ ω

0

∫ rf

ri

− 1

�2

√
�θ (r2 + a2)2 − �′2

r a2 sin2 θ [ρ2
√

�θ +
√

ρ2�θ (ρ2 − �̃′′2
r )]

ρ2�θ�̃′′2
r

× (1 − a
′)dω′dr, (38)

where ric and rf c are the locations of the cosmological horizon before and after
the particle of energy ω tunneling into, and �̃′′2

r = (r2 + a2)(1 − r2

l2 ) − 2(M + ω′)
r + q2. Obviously, there exists a pole at the cosmological horizon. The integral
can be evaluated by deforming the contour around the pole. Doing the ω′ integral
firstly yields

ImS = Im
∫ rf c

ric

− rπi

�
dr = − π

2�

(
r2
f c − r2

ic

)
, (39)

So the tunneling rate at the cosmological horizon is

� ∼ e−2ImS = e
π
�

(r2
f c−r2

ic) = e
A′

c−Ac
4 = e�SCH , (40)

where �SCH = SCH (M + ω) − SBH (M) is the Bekenstein-Hawking entropy of
the cosmological horizon, and Ac and A′

c are the areas of the cosmological
horizon before and after the particle of energy ω tunneling into. Comparing
Eq. (40) with Eq. (25), we can learn that the tunneling rate at the cosmological
horizon still provides a correct modification to Hawking radiation spectrum.

5. DISCUSSION AND CONCLUSION

In special cases, when l → ∞, a = 0, the line element (1) will reduced
to Reissner-Nordström black hole where the event horizons before and after
the particle with energy ω emission are rR

h = m +
√

m2 − q2, r ′R
h = (m − ω) +√

(m − ω)2 − q2, and the corresponding areas are AR
h = 4π (rR

h )2 and A′R
h =

4π (r ′R
h )2 respectively. From Eq. (23), we can obtain the precisely thermal spectrum

of the black hole as

Nω = 1

eω/T − 1
= 1

eαR
h AR

h − 1
, (41)

where αR
h = −ω

2
√

m2−q2
. Substituting the Bekenstein-Hawking entropies of the

black hole before and after the particle emission

SBH = 1

4
AR

h = π (2m2 − q2 − 2m
√

m2 − q2). (42)
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S ′
BH = 1

4
A′R

h = π (2 (m − ω)2 − q2 − 2 (m − ω)
√

(m − ω)2 − q2), (43)

into Eq. (36), the tunneling rate of the black hole is derived as

� ∼ e
A′R

h
−AR

h
4 = eS ′

BH −SBH = e−2π[2ω(m− ω
2 )+m

√
m2−q2−(m−ω)

√
(m−ω)2−q2] = e�SBH .

(44)
The expression (44) supports the Parikh’s results.

The existence of the Hawking tunneling characteristics in Kerr-Newman de
Sitter black hole causes the radiation at the horizon of the black hole. When a
particle with energy ω is radiated, the horizon of the black hole will changed
after taking energy conservation and angular momentum conservation into con-
sideration, and then the background geometry should be dynamical. So the factual
radiation spectrum will be deviated from the strictly thermal one. Kerr-Newman de
Sitter black hole is a general axi-symmetry black hole, and the tunneling effect can
be happen at the cosmological and event horizon. Equations (36) and (40) provide
a correct modification to the corresponding Hawking radiation spectrum, where
(r2

f − r2
i ) and (r2

f c − r2
ic) are connected with the energy ω carried by the outgoing

and ingoing particle. In special cases, from the expression (44) we can learn that
the tunneling rate is related to higher exponent of ω, only neglecting the items of
higher exponent of ω can we obtain the same result as Eq. (41). Obviously, the
Hawking thermal radiation spectrum is strictly thermal but the factual radiation
spectrum is not, which provides a meaningful correction.
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